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DYNAMIC SUBSTRUCTURING BY THE BOUNDARY FLEXIBILITY
VECTOR METHOD OF COMPONENT MODE SYNTHESIS

Abstract
by

AYMAN AHMED ABDALLAH

Component mode synthesis (CMS) is a method of dynanmic
analysis, for structures having a large number of degrees of
freedom (D.O.F.). These structures often required lengthy
computer CPU time and large computer memory resources, if solved
directly by the finite-element method (FEM). In CMS, the
structure 1is divided into independent components in which the
D.0.F. are defined by a set of generalized coordinates defined by
displacement shapes. The number of the generalized coordinates
are much less than the original number of physical D.O.F., in the
component. The displacement shapes are used to transform the
component property matrices and any applied external loads, to a
reduced system of coordinates. Reduced system property matrices
are assembled, and any type of dynamic analysis is carried out in
the reduced coordinate system. Any obtained results are back
transformed to the original component coordinate systems. In all

conventional methods of CMS, the mode shapes used for components,
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are dynamic mode shapes, supplemented by static deflected shapes.
Historically, all the dynamic mode shapes used in conventional CMS
are the natural modes (eigenvectors) of components.

This work presents a new method of CMS, namely the boundary
flexibility vector method of CMS. The method provides for the
incorporation of a set of static Ritz vectors, referred to as
boundary flexibility vectors, as a replacement and/or supplement
to conventional eigenvectors, as displacement shapes for
components. The generation of these vectors does not require the
solution of a costly eigenvalue problem, as in the case of natural
modes in conventional CMS, and hence a substantial saving in CPU
time can be achieved. The boundary flexibility vectors are
generated from flexibility (or stiffness) properties of
components. The formulation presented is for both free and
fixed-interface components, and for both the free and forced
vibration problems. Free and forced vibration numerical examples
are presented to verify the accuracy of the method and the saving
in CPU time. Compared to conventional methods of CMS,the results
indicate that by using the new method, more accurate results can

be obtained with a substantial saving in CPU time.
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Chapter 1

Introduction

Since the late fifties and early sixties, there has been
rapid advancement in the field of structural dynamics. The
primary cause of this advancement was the introduction of digital
computers and the associated analytical software which made the
application of numerical methods to dynamic analysis problems more
feasible. The most powerful of these numerical techniques was the
finite element method, which can be considered the basis for a new
era in the field of mathematics (more precisely in the solution of
partial differential equations), and consequently many fields of
science, including structural dynamics. |

Previous to the finite element method, there existed other
approximate methods of analysis, such as Rayleigh’s method in
dynamic analysis. The main disadvantage of this type of analysis
is that it requires the assumption of reasonably accurate mode
shapes for the structure, which 1is not always readily
accomplished, especially 1in large and complex structures.
Compared to these previous methods of analysis, the finite element
method is more accurate, more direct (no mode shapes need to be
assumed) and can be applied to a structure of any degree of
complexity.

Following the finite element method, a new modeling
technique, namely component mode synthesis (CMS), was introduced

by Hurty [1] in the mid-sixties. Component mode synthesis is a



method of dynamic substructuring, in which the structure is
divided into independent components or substructures. The main
motivation for introducing the method arose in the dynamic
analysis of large structures, having a large number of physical
degrees of freedom. These large structures usually required
lengthy computer CPU time and large computer memory resources,
when solved by finite elements directly. By using CMS, savings in
computer time and memory can be attained. Moreover, other
advantages can also be attained through the use of dynamic
substructuring such as:

1- Independent design and analysis efforts for various components
of a structure.

2- Reducing effort if system can be divided into identical
repetitive components having the same constraints and
displacement modes.

3- The incorporation of experimental and analytical data can be
achieved, for the characterization of components.

4- Reducing computational cost of a reanalysis, in case not all
components are modified.

The saving in CPU time and computer memory is achieved by
reducing the number of degrees of freedom, associated with each
component. This is accomplished by defining the displacements of
each component by a set of generalized coordinates, consisting of
the amplitudes of a corresponding set of mode shapes. In all

conventional CMS methods, the mode shapes used are dynamic mode



shapes, supplemented by static deflected shapes. All the dynamic
modes historically used in CMS, are natural modes of vibration
(eigenvectors) for the component.

This work presents a new method of CMS, namely the boundary
flexibility vector method of CMS, which is based upon utilizing a
set of static Ritz vectors, as displacement shapes for components.
The generation of these vectors, referred to herein as "boundary
flexibility vectors", does not require the solution of a costly
eigenvalue problem, as in the case of natural modes in traditional
CMS. Thus, a substantial saving in computer time is obtained.
The presented method is general and can be utilized for any type
of dynamic analysis.

This work is divided into six chapters. Chapter one is an
introduction to the work. Chapter two is a brief review of
traditional methods of CMS, and previous work in the application
of static Ritz vectors in structural dynamics. The formulation of
the boundary flexibility method of CMS is presented in chapter
three. The presented formulation is for both fixed and
free-interface components. Also, a hybrid boundary flexibility
and traditional CMS formulation is presented. A comparison of the
number of operations required to generate the boundary flexibility
vectors versus eigenvectors is given at the end of the chapter.
In chapter four, small and large free vibration problems are
utilized to verify the accuracy and CPU time saving of the new

method compared to finite element representations and traditional



methods of CMS. Chapter five presents the formulation of the
boundary flexibility method of CMS for the forced vibration
problem. An example is solved numerically by several methods and
for different loading conditions. The transient response is
compared for all methods. Chapter six includes a work summary,

conclusions and ideas for future work in this field.



Chapter 2

Literature Review

2.1) Introduction:

This chapter is divided into two main and independent parts.
The first part is a very brief review of component mode synthesis.
The main steps of CMS, classification of components and type of
displacement shapes are introduced in this part. Part two is a
detailed review of previous work, in the application of load
dependent Ritz vectors in structural dynamics.

2.2) Review of Component Mode Synthesis:

As mentioned before in chapter one, component mode synthesis
(CMS) was introduced by Hurty [1] in 1965. Since then, several
different variations of the method were introduced. However, the
main idea of reducing the number of degrees of freedom used to
characterize components, through use of a truncated set of mode
shapes and generalized coordinates, is common to all CMS methods.
A detailed review of CMS methods was given in a previous work [2]
by the author. The main steps of conventional CMS, as given in
reference [2], are summarized as follows:

1- Divide the system into independently characterized components.
Each component has a vector {u} of total physical degrees of
freedom (D.O.F.). (See Figure (1)). A component can be connected
to other components or to the ground through a support, as shown
in Figure (1). The common boundary between components is the

interface. Let {ub} be the vector of D.0.F. contained in the



interfaces of the component. Thus, {u} is partitioned into

u
{u} = € (2.1)

u
i

vector of internal D.O.F. in component.

where { u }

complement of {uc} in {u}.

2- Define the displacement of each component by a set of mode
shapes and generalized coordinates. The generalized coordinates
can be taken as the amplitudes of these mode shapes. The mode
shapes used contain static displacement shapes, as well as a
truncated set of natural modes of vibration. Usually a very small
number of static and dynamic displacement shapes is required, to
obtain a good representation of the component in the new
coordinate system. Thus, the number of the new set of generalized
coordinates is generally much smaller than the original number of
physical D.O.F., in the component.

3- For each component, transform the property matrices (mass,
stiffness and damping), from the physical coordinate system to the
new reduced system of generalized coordinates.

4- Couple all the components by enforcing displacement
compatibility requirements at the interfaces between components,
thereby assembling reduced system property matrices.

S- Perform any type of dynamic analysis (eigenproblem solution,
transient or steady-state response,etc...) in the reduced
coordinate system of generalized coordinates.

6- Any obtained results are back transformed to the original



system of physical D.O.F.

For all wvariations of C.M.S., within the individual
characterization of components, interface D.0.F. can be considered
either free or totally fixed. Accordingly, components can be
classified into either fixed or free-interface components. For a
detailed discussion and formulation of fixed-interface components
see Hurty [1], Abdallah [2], Craig and Bampton [3] and Craig [4].
While for free-interface components see Abdallah [2], MacNeal [S],
Rubin [6] and Martinez and Gregory [7]. The first investigator to
introduce fixed-interface components, was Hurty [1] in 1965, while
free-interface components were introduced by Goldman [8] in 1969.
The method of coupling components, introduced by Goldman [8], was
rather complicated. Several alternative methods of coupling
free-interface components were introduced by Hou [9], Dowell [10]
and Abdallah [2]. In 1971, following Goldman’s work, MacNeal [5]
gave a better understanding and representation of free-interface
components through the use of the idea of residual flexibility.
In 1975, Rubin [6] expanded MacNeal’s work to free-interface
components, having rigid body modes.

It should be noted that the decision to characterize
interface D.O.F. into free or fixed often depends on the type of
displacement shapes available to the analyst, i.e., the fixed or
free-interface type. It also depends on the Jjudgment of the
analyst as to what level of constraint each component imposes on

the other. The displacement shapes. used for the characterization



of components, may be obtained either experimentally or
analytically. There are several different types of displacement
shapes used in the literature of C.M.S. They are summarized in
the following: For fixed-interface components:

1- Fixed~interface normal modes of vibration [¢n]: They are the
natural modes of vibration (or the eigenvectors), obtained from

solving the eigenvalue problem associated with the equation of

motion of the component. They are computed assuming all the
interface degrees of freedom fixed. Only a truncated set of
normal modes [@k] (kept modes) are used. Usually the low

frequency mode shapes are the ones used or kept.

2- Constraint modes [Qc]: A constraint mode {¢c} is defined as,
the static displaced shape obtained by applying a unit
displacement at one interface D.O.F. while totally constraining
all other interface D.0.F. in the component. The number of
constraint modes used for each component is equal to the number of
interface D.O.F. in that component. The generalized coordinates
associated with these constraint modes, are usually taken as the
interface D.O.F. in components. Rigid-body modes can be included
in these constraint modes.

For free-interface components, the following displacement shapes
are used:

1- Free-interface normal modes of vibration [ﬁn]: They are the
same as in fixed-interface components except they are computed

assuming all interface D.0.F. free.



2- Rigid-body modes [¢r]: They are used for free-interface
components having no constraints preventing them from rigid-body
motion.

3- Attachment modes [Qa]: They are defined on a subset {ua) of the
total physical degrees of freedom {u}. An attachment mode {¢a} is
defined as the static displaced shape obtained by imposing a unit
force (or moment) on one D.O.F. of {ua} with zero forces on all
remaining D.O.F. in {ua}. According to Meirovitch [11], Bamford
was the first investigator to introduce attachment modes in 19867.
They were used to account for the effect of concentrated loads on
unconstrained D.O.F.

4- Residual flexibility modes [Wd]: They are static displacement
shapes introduced by MacNeal [5] in 1971, to obtain a better
representation for free-interface components. (See (5)). They
were introduced to replace attachment modes as static mode shapes
for the component.

S~ Inertia relief attachment modes [W;]: They are the static
displacement shapes, for components having rigid-body modes,
analogous to attachment modes [¢a] in case of components having no
rigid-body modes. They were introduced by Rubin [6] in 197S.

6- Residual inertia relief attachment modes [Wr]: They are static
displacement shapes iﬂtroduced by Rubin [6] in 1975. They were
introduced to be wused for free-interface components having
rigid-body modes analogous to residual flexibility modes [Wd].

used for components having no rigid-body modes.
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2.3) Review of Previous Work with Load-Dependent Ritz Vectors:

The application of load-dependent Ritz vectors was introduced
by Wilson et al. [12] in 1882. They were the first investigators
to point out the usefulness of load-dependent Ritz vectors in
dynamic analysis. The vectors were used to calculate transient
dynamic response by Ritz vector superposition. The load-dependent
Ritz vectors were used, instead of natural modes of vibration
(eigenvectors), in a fashion equivalent to mode shapes. In all
presented examples, it was shown that the superposition of
load-dependent Ritz vectors yielded more accurate forced dynamic
response results, with fewer number of vectors, than if the
natural modes (eigenvectors) were used. Furthermore, the
load-dependent Ritz vectors are generated with less computational
effort than eigenvectors. The method used by Wilson et. al [12]
is summarized in the following:

Consider a damped system, having n degrees of freedom. Its

equation of motion is:

[M] {a} + [C] {u} + [K] {u} = {£(s)} g(t) (2.2)
where [M] = mass matrix of system
[C] = damping matrix of system

(K]

stiffness matrix of system
{u} = displacement vector

{u} = velocity vector

{u} = acceleration vector

{f(s)} = vector of spatial distribution of
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external load
g(t) = time-dependent amplitude of {f(s)}
The load-dependent Ritz vectors are generated by Wilson’'s
algorithm given in reference [12]. The main steps are as follows:
1- Given [M], [K] and {f(s)}.
2~ Solve for first vector (x:) and normalize with respect to the

mass matrix to obtain {xl}.
(K] {x:} = {f(s)}

172
* .'r »
{xl} = {xl} /7 ( {X1} [M] {x1} )

"r »

where {xl} is the transpose of {xi}
3- Solve for additional vectors (i = 2,3,4,..... ,L)
»
[K] {xl} = [M] {xll1
- Orthogonalize with respect to [M], with all previous (i-1)
vectors
i-1

{x,} = {x} - j;( c, {x})

where cj = {xj} (M] {xi}

- Normalize vector {x:'} with respect to [M] obtaining {xi}
L 2 ] E 2 T »e 172
(xi} = {xl} /7 ( {xl} [M] {xi} )
4- Orthogonalize all obtained vectors with respect to the
stiffness matrix [K] (optional step). This step is done as

follows:
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- Form [X] = matrix containing all previously calculated
load-dependent Ritz vectors in its columns. Its
dimension is (n x L)
[A] = (X]7 [K] [X]
(I = [X]7 [M] (X] = identity matrix of order L

- Solve the following reduced-order (L x L) eigenvalue problem.

(Solve for {yl}, i=1,..... ,L)

[ (A] - o® 1] ] ty,) = {0

where {yi} it eigenvector

2
W

.th
) i eigenvalue

- Compute final orthogonal vectors [X'] from

(x°1 = (X] [Y]

where [X] =an (n x L) matrix containing final
load-dependent Ritz vectors in its columns.
All vectors are orthogonal with respect to
the mass and stiffness matrices.

(Y]

an (L x L) matrix containing the
eigenvectors {yl} in its columns.

According to Wilson's algorithm, load-dependent Ritz vectors
can be defined as static displacement shapes generated from the
spatial distribution of the external 1loading applied on the
system. It can be seen that the initial load-dependent Ritz
vector is the static displacement of the system, due to the

applied load, while all subsequent vectors are obtained from the
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inertial loading of the response. Thus, it is ensured that all
the generated load-dependent Ritz vectors, are excited by the
applied external load pattern, and hence, will contribute to the
response. While in the case where natural modes of vibration
(eigenvectors) are wused, there could be mode shapes which
contribute little or nothing to the response (as the case of a
symmetric spatial distribution of load and an anti-symmetric mode
shape) even if the natural frequency of the mode shape is well
represented in the loading frequency content.

After obtaining the load-dependent Ritz vectors [X°], the

displacement vector {u} is approximated by

L -
o
{u} = 1; {(x} z(t) (2.3)
where Zl(t) = time-dependent generalized coordinates

associated with load-dependent vector i.
The mass, stiffness and damping matrices are transformed to a

reduced set of coordinates by:

(M) = [x°1T [M] [X]
= identity matrix [I] of order L
('] = [(x°17 (K] [X]
(e’ = x°17 c1 [x) (2.4)

Where [M.]. (X1 and (C"] are the transformed property matrices.
[M'] and (K] are diagonal because the generated load-dependent
Ritz vectors [X°] are [M]-orthonormal and [K]-orthogonal. If

proportional damping is used,
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[Cl=a, (M +a [KI (2.5)

where a_ and a are constants, then [C'] is also diagonal.
Thus, the final system equations of motion are diagonalized and
reduced to L uncoupled, linear, second order, ordinary

differential equations, as follows:
(M1 {2 + 1€ (2 + (K] (@ = 1X°1T {£(s)} g(t) (2.6)

These uncoupled equations are solved using any numerical
technique, obtaining the desired response. Wilson et al. [12]
also introduced an expression that provides an error estimation
for the dynamic analysis. As mentioned before, the numerical
examples introduced by Wilson indicate that by using a fewer
number of load-dependent Ritz vectors, more accurate results can
be obtained than by using eigenvectors.

In a paper by Nour-Omid and Clough [13] in 1984, it was shown
that by orthogonalizing any obtained load-dependent Ritz vector
with only the two preceding vectors (step 3 in Wilson’s
algorithm), one can theoretically ensure orthogonality with all
previously calculated vectors. The main problem in this procedure
is that orthogonality can be lost due to roundoff errors,
accumulating from one step to another. Thus, orthogonality must
be checked, while generating each vector, by a certain scheme
given in reference [13]. Also, it was shown how the loss of
orthogonality can be corrected if it exceeds a certain tolerance
limit. The method of generating the load-dependent Ritz vectors

in reference [13], followed that outlined in Wilson's algorithm
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through step number three. Hence, no orthogonalization was
carried out with respect to the stiffness matrix, hence avoiding
the solution of the (L x L) eigenvalue problem. The transformed
stiffness and damping matrices thus obtained are not diagonal.
However, it was shown in reference [13], that the equation of
motion (2.2) can be reduced to a tridiagonal form, through a
prescribed set of transformations. (Note that proportional
damping, given by equation (2.5), is used). The final transformed

equation of motion will be as follows:

(T, ] {2 + [ a, [T ] +a [I] ] {2} + {2} = (e} glt)  (2.7)

where [TL] = Transformed mass matrix of order L xL.
It is a tridiagonal matrix.
[IL] = Transformed stiffness matrix.
= Identity matrix of order L x L.
{e} = Transformation of {f(s)} vector. All its

elements are zeros except the first

element is non-zero.

a,, a, {2}, {2}, {2} and g(t) are as before.
As seen in equation (2.7), the excitation is applied only in the
first of these equations of motion. While equations 2, 3, ....up
to L are equations of free vibration.
In another paper by Arnold et al. [14] in 1985, it was stated
that Wilson’s algorithm had been implemented into the MSC/NASTRAN
program. The method presented by Wilson et al. [12] was applied

to structures having 1000 degrees of freedom. The results
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presented in reference [14] showed that by using load-dependent

Ritz vectors, instead of eigenvectors, the following was obtained:

1- A saving of 80 % for eigenvalue extraction.

2- A saving of 50 % for response calculations.

In 1986, Wilson and Bayo [15] introduced load-dependent Ritz
vectors to fixed-interface component mode synthesis, in the
calculation of forced responses by dynamic substructuring. The
presented method had the following limitations:

1- The method is only suitable for forced vibration problems where
there are external loads, thus it cannot be applied to free
vibration problems.

2- The presented formulation is only applicable to fixed-interface
compcenents.

3~ The displacement shapes used for components are constraint
modes [Qc] and load-dependent Ritz vectors for components
having external loads. The load-dependent Ritz vectors are
generated from those external loads, assuming the interfaces of
components totally fixed. Thus, if there are no external loads
or they are applied at the interfaces of a component, then no
load-dependent Ritz vectors are generated for this component.
Hence, only constraint modes will be used, as displacement
shapes for such a component, and the component representation
is not expected to be good in that case. Wilson and Bayo
suggest, for such components, to generate load-dependent Ritz

vectors from a fictitious uniform external load, applied to the
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component. In the presented problems, the components were
planar beams and the fictitious uniform load was taken
perpendicular to the length of the beams. The assumption of
the uniform load does not have any theoretical basis and cannot
be justified for complex three-dimensional components, where an

assumption of a suitable uniform loading is not possible.
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Figure (2.1) - A Structural Component
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Chapter 3

Boundary Flexibility Vector Method

of Component Mode Synthesis

3.1) Introduction:

The boundary flexibility vector method of CMS is presented in
this chapter. All of the underlying equations will be derived.
The method 1is described for both fixed and free-interface
components. It should be noted that the developed formulation has
many similarities to that of conventional CMS methods, thus
facilitating the combination of conventional normal modes and
boundary flexibility vectors, as a set of generalized coordinates
for components. The boundary flexibility Ritz vectors are
generated by an extension of Wilson’s load-dependent Ritz vector
algorithm, (described in the previous chapter). The boundary
flexibility Ritz vectors are not, however, generated from external
loads, applied to the system. Thus, they can be incorporated into
both forced and free vibration problems. The generation of the
boundary flexibility Ritz vectors does not require the solution of
a costly eigenvalue problem, associated with the equation of
motion of a component. Hence, a substantial saving in CPU time is
generally achieved by using the boundary flexibility vectors
instead of the conventional eigenvectors.

To illustrate the boundary flexibility vector method of CMS,
a generic type of structural component will be used, as shown in

Figure (1). Assume the total number of D.O.F. in the component is

19
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n. Let {ul} and {uc} be the subvectors of internal and interface
degrees of freedom in component. The lengths of {ul} and (ub} are

i and ¢ respectively. Hence, the total displacement vector {u} is

u
{u} = € (3.1)
ul

Accordingly, the mass [m] and stiffness [k] matrices of undamped

partitioned into

component, can be partitioned into:

(m ] (o ] (k] (k]
cc c and (k] = c

©]  n) ] k)

(m] = (3.2)

The method will be presented in the following sections, for both
fixed and free-interface components.

3.2) Fixed-Interface Boundary Flexibility Vector Method of CMS:

As mentioned before, the formulation can be based entirely on
the boundary flexibility Ritz vectors, or on a hybrid boundary
flexibility vector/conventional CMS formulation. The two
formulations are presented in the following:

3.2.1) Boundary-Flexibility Vector Formulation:

Consider the equation of motion - for the undamped

fixed-interface component
[m1} {ﬁl} + [ki] {ui} = {f(s)} g(t) (3.3)

where (Gx} = acceleration vector of internal D.O.F.
{f(s)} and g(t) are as before in the previous

chapter.
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The reason the equation is written in terms of the internal
D.O.F. (ui} only, is that the interface D.O.F. {ub} are assumed
totally fixed, in the case of fixed-interface components. As the
interface D.0.F. are not actually fixed and they undergo
displacements within the motion of the whole system, then the
forcing function on the component can be considered as support
motions (accelerations) at the interface degrees of freedom. The
idea of the pseudostatic influence vectors, commonly used in
earthquake-response analysis (see Clough and Penzien [18]), is
employed to obtain the loading function. According to reference
(18], a pseudostatic influence vector defines the static response
of the internal D.0.F. due to a unit displacement (motion) applied
at one support (interface) D.0O.F. In case each interface D.O.F.
is subjected to a unit displacement, the total static response of
the component is obtained by superposition of the pseudostatic
influence vectors obtained from each independent unit
displacement. In case the load is defined by a unit acceleration
at one interface D.O.F., the pseudostatic influence vector is used
to define the distribution of the load (acceleration) within the
component. The definition of the pseudostatic influence vectors
is thus similar to that of the constraint modes [Qc], previously
defined in chapter (2). The size of matrix [Qc] is (n x ¢) and it
contains all the constraint modes {¢i} in its columns, where j =

1, 2,...... c. [Qc] is given by:
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(3.4)

| SE— |
[
——
po—— —
e —
Lol (2]
Ot [y 1)
| S |

I
o a
]
"3
o
—-
1

identity matrix of order c

part of constraint modes defining displacements

~—
L=

[y 1)
[}

of interior D.O.F.

(®,] 1s obtained from solving the lower partitions of the

ic
equations
[ (k1 (k] ] [ (1] ] [ (P ] }
cc [+] cec = (o] +] (3.5)
(el Tk (e, (o,
where [ch = interface forces between components
- -1
thus [¢ig = [kil [k12

For an acceleration GCSt) given at interface D.O.F. number j, the

forcing vector will be

- _ j .
{fj(s)} gJ(t) = [mll {¢1£ u St) (3.6)

c

Thus the total forcing vectors of equation (3.3) is given by:

{(f(s)} glt) = - Z C [n] “’fl ﬁcgt) ) (3.7)
Jj=1

The summation is carried out for all the accelerations applied at
all the D.O.F. contained in {u}. It is clear that for the "

forcing vector given by equation (3.6)
Sj(t) = - ubst) (3.8)

Thus the j*" spatial distribution of the force is
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= J
{fj(s)) = [ml} {¢1z (3.9)

Wilson’s algorithm can then be used to generate the boundary
flexibility Ritz vectors, from each of the derived spatial
distributions of forces. The ‘jth starting vector {q:§ is obtained

from (fJ(s)} by

= J
[kil {qla = [mil {¢l£ (3.10)

Wilson’s algorithm is used without the last step (step 4) of
orthogonalization with respect to the [k“] matrix. Each
subsequent vector in the jt'h set is then orthogonalized with
respect to the mass matrix, with all the previous vectors
generated in all the sets from 1 through j (step 3 in Wilson’s
algorithm). FEach generated vector is normalized with respect to
the mass matrix.

Let ¢ be the number of generated boundary flexibility Ritz
vectors. Let [QZ] be the matrix containing the generated vectors
in its columns. The size of [Q£] is (i x 8. Let {pz} be the
vector containing ¢ generalized coordinates associated with the
generated boundary flexibility vectors. Then [@c] and [Qll are
used to transform the coordinates, from a physical coordinate
system to a mixed physical and generalized one. The

transformation relation is as follows:

u u (1] [012 u
¢ = [T] ¢ = ce ¢ ¢ (3.11)
u P, (¢,]1 (Q,] 1)



24

where [T] = transformation matrix of order (n) x (c+&)
It should be noted that the number of boundary flexibility
vectors, ¢, must be less than the total number of internal D.O.F.,
i, in the component, for any reduction of the total number of
D.0.F., to be achieved. This is usually the case, as a very small
number of boundary flexibility vectors, 1is often sufficient to
obtain a good representation of a component, as will be
illustrated in the numerical examples. The transformation matrix
[T] is used to transform the property matrices, given in equation
(3.2), to the reduced mixed coordinate system. The final
transformed component mass matrix [p] and component stiffness

matrix [Q] are as follows:

(p ] (]
[u] = (T1T (m] [T] = [ ce ot } (3.12)
(el [y,

_ T
where [“c<]: - [mcl. * [°1<]: [mi} [°1<]:

_ T _ T
[#&]: = [u}:e = [Qel [mil [th:
[u]u = [Qzlr [m‘) [Qtl- = [I]u =  identity matrix of
order {.
T Q] [Q]e
(@] = [T]" (k] [T] = e ¢ (3.13)
[Qzl [Qlu

- - _ -1
shere (8] = (c) (k] (8] = Do) - (k] Ok ]™ U]
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—-— T 3
[9&1 = [Qg8 = [0&]:

[al,, = (q,]" (k] [Q,]

For every component, the boundary flexibility vectors are formed,
and the transformation of coordinates is carried out to obtain
reduced property matrices. As all displacements of the interfaces
of the components are defined by physical D.O.F., then the
assembly of system property matrices, at the interfaces, is simply
done by direct summation of the interface portions of property
matrices of components, as in conventional direct stiffness
assembly of finite element property matrices. Any type of dynamic
analysis 1is carried out using the reduced assembled system
property matrices. Any obtained results are back transformed to
the physical coordinate system, by utilizing equation (3.11).

3.2.2) Hybrid Boundary Flexibility Vector/ Conventional CMS

Formulation:

The method can be applied for the general case where a
combination of boundary flexibility vectors and natural vibration
modes (eigenvectors}), are wused as displacement shapes of
components. This case could arise when the number of available
natural modes of vibrations, obtained from experiments, for
example, are insufficient to give adequate representation of a
component.

Let ¢ be the number of obtained boundary flexibility vectors,

k be the number of any kept natural vibration modes, [¢k] be the



26

matrix containing the kept natural modes in its columns, and {pk}
be the vector of generalized coordinates associated with the
natural modes. [Qel and {pe} are as before. It should be noted
that the generated boundary flexibility vectors, contained in
[QZ]’ are orthogonal to each other and they are orthogonalized
with all the natural modes contained in [d’k], with respect to the
mass matrix [miz. [QZ]‘ [d’“]: and [‘bk] are used to transform the

coordinates from the physical coordinate system to the reduced

mixed physical and generalized one. The transformation is as
follows:
u A (1] (o], o] Y,
¢ = [T ] pg = ce pe (314)
u, b, [@1}: [Qe] [@k] )

where [T ] = transformation matrix of order (n) x (c+&k)
The property matrices of equation (3.2) are transformed, giving

the following reduced mass [u] and stiffness [Q] matrices.

[l [u]e [ul
e ’ cc [ c

(u] = [T 1 [m] [T] = [u&]: [p.]u [p&]‘ (3.15)
[“1«]: [“ll [”m]c

where [y ] = (n] + (8] [n] (3]

(u] = [u]} = [Q,)" [n] 2]
(w]) = [ucgf = [¢k1’ [m] (2]
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_ T

= [I]u = identity matrix of order ¢

“‘le

!

T
(up)” = [011‘8

T
(] (m, ] (]

[Ikl = identity matrix of order k

[Qc] [Q]z [Q&

~ ‘r , _ c [ ¢
(Ql = (T ] (k] [T ] = [Qeg [Qlu [Qli (3.16)

9] 19, 0]

-1 :
where [Q ] (k] + (k) [e]= (k] - [k ] (k] [k 1

[Q,]

[}
-
o]

"
o~
o

9,]

(21" = [0,)
_ T
(a1, = 1g,1” [k ] [q,]
T T
[Qll‘e = [Qzl = [Qk] [kll [Qll
[a) = te,1" [k ] [2] = diagonal matrix, having the

squares of natural frequencies in its diagonal.
The rest of the procedure is similar to what was explained in the
previous section.

3.3) Free-Interface Boundary Flexibility Vector Method of CMS:

Two formulations are presented; formulation based only on

free-interface boundary flexibility vectors and a hybrid
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free-interface boundary flexibility vector/conventional CMS
formulation.

3.3.1) Boundary Flexibility Vector Formulation:

Analogous to conventional method of free-interface CMS, two
cases have to be considered separately; systems in which
components have rigid-body modes and systems in which components
have no rigid-body modes.

3.3.1.1) Components Having No Rigid-Body Modes:

The equation of motion for an undamped free-interface

component in physical coordinates is

m] [0] u (k] [k] u f
aa aw a + aa aw a - al. (3 . 17 )
[ Ow; [ mw‘]' i.l [ kw; [ k"‘]‘ w

where {ua} subset of total displacement vector {u} for which

internal or external forces are applied.

{u}

W

complement of {ua} in {u}.

{fa} vector of external and internal forces acting on
component.

Without a loss of generality, the case of free vibration of a
component will be considered. The method that will be presented
in this section can also be applied to the case of components
having external loads, as will be explained in another section.
In the case of free vibration, there are only internal forces

acting at the interfaces between components. Thus {uh} is equal

to (uc} and equation (3.18) will be
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[m ] o ] u [k ] [k ) u f
cc c "c + cc [+ c = [+ (3. 18)
[Oll [mzl Y [ki [kxl Y 01

where {fc} = subvector of internal forces acting on the

O

interfaces of component.
The static response of the component to any individual force (or
moment) in {fc} acting at one of the degrees of freedom of the
interface {uc}, is a multiple of its response to a unit force (or
moment) applied at this degree of freedon. According to the
previous chapter, the static responses of the free-interface
component to a set of wunit forces (or moments) applied
individually and successively on every D.O.F. in {uc}, were
defined as the attachment modes [@aL The number of attachment
modes in the component are equal to the number of the degrees of
freedom in {uc}, where the unit forces are applied. Hence the
dimension of [¢a] is (n x c) and it contains all the attachment
modes {¢i} in its columns, where j = 1, 2,..... c. The static
response of the component to the vector {fc} is a linear
combination of the attachment modes in [¢aL According to the
definition of attachment modes, they are the columns of the
flexibility matrix ( [g] = [kI™}) corresponding to the D.O.F. in

{ua} (or {uc} in case of free vibration). Hence

[& ] {g ]
(e ] = i ce (3.19)
o), ] Lt
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The free-interface boundary flexibility Ritz vectors are
derived from the force vector {fc}. They are obtained from the
displacement shapes of the static responses of the component to
the forces (or moments) in {fc}. The jth starting boundary

flexibility vector, {q:g is obtained from the inertial loading of

the static response {¢i}, as follows:
. = b
[k] {qlk = [m] {¢a} (3.20)

Note that the jth starting vector is not taken as {¢:}, which is
the static response to the applied unit load at interface D.O.F.
number j. This approach is different than Wilson’s method, where
the starting vector is taken as the static response to the
external applied load. This approach is also different than that
presented in fixed~interface boundary flexibility method of CMS,
where the starting vector was taken as the static response to the
load derived in equation (3.9). The reasons for this approach
will be clarified in a subsequent section of the thesis.

After obtaining the Jth starting vector, subsequent vectors
are also obtained in a somewhat different procedure than that of
the fixed-interface algorithm. The difference is that all the
normalizations and orthogonalizations of vectors are performed
with respect to the stiffness matrix instead of the mass matrix.
The reason for this difference will also be clarified in a
subsequent section of the thesis. It should be noted that any
obtained vector in the Jth set is orthogonalized with respect to

the stiffness matrix, with all previocus vectors obtained in sets 1



31

through j.

In a paper presented by Hintz [17], it was pointed out that
in order to obtain a good representation of components in
free-interface CMS, an accurate determination of displacements at
D.0.F. in {ua} (or {uc} in free vibration), where forces are
applied, 1is required. In other words, the static displacement
response of the component to interface forces must be the same for
both the CMS model and an acceptable finite-element model of the
component. In this case, the static representation of the
interface D.0.F. is said to be complete, in the new system of
generalized coordinates. In order to obtain the same displacement
response, for both the CMS and finite-element models, the
representation of the columns of the flexibility matrix
corresponding to the D.O.F. in (ua} must be complete for the CMS
model. If the complete set of free-interface normal modes is used
as displacement shapes for the component, then the representation
of the flexibility of interface D.0.F., is by definition,
complete. Since a truncated set of the free-interface normal
modes is generally used in conventional CMS, the flexibility of
the component 1is generally less than that of the corresponding
finite-element model. That is, the contribution of the truncated
set of free-interface normal modes to the flexibility matrix is
incomplete, and the free-interface normal modes need to be
supplemented with static displacement shapes. The static

displacement shapes used in conventional CMS are the residual
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flexibility modes [‘I’d], defined before 1in chapter two (see
references (2], (5], [6], and [17]). The residual flexibility
modes [‘Ild] were introduced by MacNeal (5] to replace attachment
modes [Qa], as static displacement shapes for components. The
reason for introducing the residual flexibility modes is that by
using attachment modes [@a] to supplement the truncated set of
free-interface normal modes, the obtained flexibility
representation of the interface D.O.F. in the CMS model is greater
than that of the finite-element model. The more flexible
representation 1is attributed to the complete flexibility
representation of the interface D.O.F., provided by using the
attachment modes as the only displacement shapes for components.
This fact explains why the static responses to the interface
forces (which are the attachment modes), were not used as the
starting boundary flexibility Ritz wvectors. In the event they
were utilized as starting vectors, the obtained interface
flexibility of a component would actually be greater than that of
the corresponding finite-element model.

In the free-interface boundary flexibility method of CMS, the
contribution of the obtained boundary flexibility vectors to the
interface flexibility is also incomplete. To obtain a complete
flexibility, the contribution of the free-interface boundary
flexibility vectors to the flexibility matrix must be determined.
Assume the number of the obtained boundary flexibility vectors is

£ Let [Q£] be the matrix containing the £ boundary flexibility
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vectors in its columns and let {pt} be the vector of generalized
coordinates associated with the free-interface boundary
flexibility vectors. The sizes of [QZ] and {pe} are (n x ¢) and

(&) respectively. Consider the static equilibrium equation of the

£
[k] {u} = ¢ (3.21)
oi

total stiffness matrix of component.

component

where [k]

{u}

total displacement vector.

c

f
{ } = force vector containing only forces at
0

1
interface degrees of freedom.
The boundary flexibility vectors [Qzl are used to transform the

physical coordinates {u} to the reduced set of generalized

coordinates (pg, according to the following
{u} = [Qel {p,} (3.22)

Substituting equation (3.22) in equation (3.21) and

pre-multiplying by [Qtlr, then
f
[Q,]" [kl [Q,) {py} = [q,1" { 0" } (3.23)
i
From which
-1 .
{py = [[Qalr (k] [Q,] ] [q,1” {0} (3.24)
i

Substituting equation (3.24) in equation (3.22)
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0
1

-1
f
— T T ¢
(w = [Q,] [[Qzl (k] [Qel] Q! { } (3.25)

0

£

{u} = [gk]{ °} (3.26)
0
i

flexibility matrix of component represented by

f
The static response, {u} , to the applied force vector { © }
i

is equal to

where [gk]
boundary flexibility vectors.
Hence by comparing equation (3.25) to equation (3.26), the
contribution of the free-interface boundary flexibility vectors to
the flexibility matrix is

-1

_ T T
(5,1 = 19 [ (07 1l 1) | 1,

(3.27)
For free-interface boundary flexibility vectors which are
orthogonalized and normalized with respect to the stiffness

matrix, [gk] becomes

_ T
[8k] = [Qzl [Qel (3.28)

This relationship explains why the generated boundary flexibility
vectors were orthogonalized and normalized with respect to the
stiffness matrix (k] instead of the mass matrix [m]. Notice that
the indicated inversion of the matrix in equation (3.27) is
avoided by the orthogonalization and normalization with respect to

the [k] matrix. The unrepresented flexibility, or residual
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flexibility [gd], analogous to that of conventional free-interface

CMS, is given by

[gd] = [g] - [gk] (3.29)
where [g] = full flexibility matrix = [k]™}
[gk] is given by equation (3.28)

The residual flexibility matrix [gd] is used to obtain the
residual attachment modes (residual flexibility modes) [Wd], by
applying unit forces or moments at D.0Q.F. in {ua} (or {ub} in free

vibration). Hence,

[Wd] (I] [gd]
[v] = = (g,] ce = ee (3.30)
[\Ild]w [Oxl [gdlic _

identity matrix of order c.

where (I ]
ccC

matrix of unit forces or moments applied at

D.O.F. in {ub}.
Notice that the residual attachment modes [Wh] are the columns of
the residual flexibility matrix [gd]. corresponding to the degrees
of freedom in {uc}.

The boundary flexibility vectors [QZ] and the residual
attachment modes [Wh], will be used to transform the equation of
motion from the physical system of coordinates to the reduced
generalized one. [Q£] and [Wd] will provide the complete
flexibility for the D.O.F. in {ua) (or {uc} in free vibration),
where forces are applied on the component. Let (pd} and {pz} be

the generalized coordinates associated with [W;l and [Q£]
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respectively. The sizes of {pd} and {pe} are ¢ and ¢

respectively. The transformation of coordinates is given by

u p (¥ ] Q1] P
{ c}=[.r1]{ d}= [ d cc cl]{ d} (3-31)
Y Py [Wd]lc [Q1]£ Py

where [T1] = transformation matrix of order (n) x (c+?).
[T1] can be used to transform the property matrices of component.
However coupling of components, whose interface displacements are
expressed by a set of generalized coordinates and mode shapes, is
not straightforward as in fixed-interface boundary flexibility
method of CMS. To overcome this problem, the displacements of the
interface D.O.F. are back transformed to physical D.O.F. (see
Abdallah [2]), in order to allow for a direct stiffness assembly
process. Assume the total number of generalized coordinates is J,

and if c is the number of interface D.O.F., and m = j - ¢, then

let
Py
{pj} = vector of all generalized coordinates =
Py
{pc} = any subset of {pj} having a size of c.
{pm} = complement of {pc} in {pJ}.

Accordingly, the transformation matrix [T1] in equation (3.31), is

partitioned and rewritten as follows

u p [T ] [T ] p
{ [ } = [Tll { c } = [ 1 cc 1 an { c } (3'32)
ul pm [Tlllc [Tillm pm
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From the first matrix equation in (3.32)

- -1 _ -1
{p} = IT,170 {u} - () [T1 {p} (3.33)

1 cm

And from the second matrix equation in (3.32)
{ul} = [T1]1c {pc} + [T1]1m {pn} (3.34)
Substitute equation (3.33) in equation (3.34), then

1

— —1 - =
{ul} N [Tlllc [Tllcc {uc} + ( [Tlllm [Tlllc [Tllcc [Tllcm) {pm}

(3.35)

By using equation (3.35), the transformation of coordinates in its

e

transformation matrix of size (n) x (j)

final form is as follows

u u (r] (o]}
c = [T2] c = c.:c :m
ui pm [(D“]: [Qlll

where [T2]

[¢'] = [T.1 I[T.1°¢

lc 1 ic 1 cc
. - -1
[Qii = [T1]1m [T1]ic [Tllcc [Tllcn

Notice that the form of equation (3.36) is similar to that of
equation (3.11), for fixed-interface components. The property
matrices are transformed to the reduced coordinate system by using
the transformation matrix [Tzl, of equation (3.386). As the
interface D.O.F. are defined with respect to the physical
coordinate system, then the assembly of system property matrices
is straightforward and similar to that performed for

fixed-interface components, in the previous section.
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3.3.1.2) Components Having Rigid-Body Modes:

The main complication of components having rigid-body modes
is that the stiffness matrix is singular; thus the flexibility
matrix cannot be directly obtained. This problem was investigated
by Rubin [B] in conventional CMS. He introduced an alternative
method for obtaining the residual attachment modes. To overcome
the singularity of the component stiffness matrix, he used inertia
relief loading (see references (2], [4], (6] and [7] for a
detailed explanation of the method). The results obtained by
Rubin [6] are stated briefly here.

Assume the number of rigid-body modes is r. Let [Qr] be the
matrix containing the r rigid-body modes in its columns. The
rigid-body modes are normalized with respect to the mass matrix.
Let {u} be the vector of all physical D.O.F. in component and let
{ua} be a subset of {u} where forces are to be applied to obtain
attachment modes. In Rubin’s method, the component is constrained
and prevented from rigid-body motion by applying r constraints to
a set {ur} of D.O.F., such that {ur} is exclusive of {ua}. The
sizes of {u}, {ua} and {ur} are n, a and r respectively. Let {uu}
be the complement of {ua} and {ur} in {u}, having a size of w.
Define a special flexibility matrix [gc] relative to {ur} for the

constrained component.
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(g ] (g ] (0]

aa aw ar

[g"l [Oul (3.37)

]
o

[gc]
[0 l [Orl (0]

Define a square projection matrix [A] as follows
[A] = [I]- [m] (0] (0]
nn r r

where [InA = 1identity matrix of order n.

Rubin showed that the elastic flexibility matrix [ge] is given by
lg,] = (A" [g] [A] (3.38)

The flexibility matrix [ge] is used to obtain inertia relief
attachment modes [Wa]. by applying unit forces at {ua} (6r {uc} in
case of free vibration). Inertia relief attachment modes are the
columns of the flexibility matrix [gQ] corresponding to the
degrees of freedom in {ua}.

Similar to components having no rigid-body modes, where
attachment modes [&a] were used to generate the boundary
flexibility vectors, the inertia relief attachment modes [Ta] are
used here to generate the starting vectors. The jth boundary

flexibility starting vector {q:}J is obtained from

{q:}J = [g] [m w::} (3.39)

where {wi} jth inertia relief attachment mode.

[gO] flexibility matrix given by equation (3.38).
The subsequent boundary flexibility vectors are normalized and

orthogonalized with respect to the stiffness matrix, with all
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preceding vectors, as in the previous section. The contribution
of the boundary flexibility vectors to the flexibility matrix is
as before and given by equation (3.28). Hence the residual

flexibility matrix [gd] is obtained from

- - T
[gd] = [gel [Qzl [Qzl (3.40)

The residual flexibility matrix [gd] is used to obtain residual
inertia relief attachment modes [W;]. by applying unit forces at
{ua} (or {uc} in case of free vibration). The residual inertia
relief attachment modes are the columns of the residual
flexibility matrix [gd], corresponding to the D.0.F. in {ua).
[Qr]. [Q£] and [@;] are used to transform the physical goordinate

system to a generalized one as follows:

(¥,] [q], I[®

]
ua ar ps
u = [Tw; [Qlt [¢"l P, (3.41)
Y, (v] (], Ie] P,
rs r rr
where {ps} = generalized coordinates of [Ws], of size a.
{pe} = generalized coordinates of [Qzl, of size L&
{pr} = generalized coordinates of [@r], of size r.

The size of the transformation matrix of equation (3.41) is
(n) x (2 + £ + r). The transformation of property matrices and
the assembly of the system property matrices will be similar to

what was presented in the previous section.
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3.3.2) Hybrid Boundary Flexibility Vector/ Conventional CMS

Formulation:
In this case a truncated set of free-interface normal modes
[Qk] ls used to supplement the free-interface boundary flexibility
vectors, as displacement shapes for components. Let {pk} be the
vector of generalized coordinates associated with [Qk]. The sizes
of {pk} and [&k] are (k) and (n x k) respectively. The following
steps are general regardless the component has rigid-body motion
or not.
1- Normalize all the free-interface natural modes [@k] with
respect to the component stiffness matrix [k]. ( optional step).
2~ Generate the free-interface boundary flexibility vectors [QZ]
from the starting vectors of equation (3.20), in case of
components having no rigid-body modes, or equation (3.38), for
components having rigid-body modes. It should be noted that
every generated vector is orthogonalized with respect to the
stiffness matrix [(k], with all natural modes contained in [ék]
and with all previously generated boundary flexibility vectors.
Every generated vector is normalized with respect to the
stiffness matrix. Let ¢ be the number of the generated
boundary flexibility vectors and let {pz} be the vector of
generalized coordinates associated with them.
3- Form a matrix [V] containing the normal modes of vibration [¢k]
and the generated boundary flexibility vectors [Q!], in its

columns. The size of [V] is (n) x (k + ¢). Hence,
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vl = [[cbk] (q,] ] (3.42)

Accordingly the vector of total generalized coordinates, {pv}, is

pk
{pv} = (3.43)
Py

The contribution of the [V] matrix to the flexibility matrix [gk]

formed as follows

is

[g,] = (VI vt (3.44)

Or in case the natural modes of vibration [¢k] are not normalized
with respect to the [k] matrix (step 1 above), [gk] is given by

(see equation (3.27))

-1 [A [0 -1
(g,] = (V) [m’ (k] [V]] viT = (v [ o (O ] (v1?

[081]< [I]&
(3.45)
where [Akl = a diagonal square matrix of order k. It
contains the eigenvalues, corresponding to
natural modes [Qk], in its diagonal.
[I]L£ = identity matrix of order L

Although equation (3.45) involves an inversion of a matrix, it can
be used because the matrix is diagonal and its inverse can be
obtained readily.

The subsequent steps, whether for components with or without
rigid-body modes, are similar to that explained in the previous

}

section, except that every [QZ] is replaced by {V] and every {p2
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is replaced by {pv}, in the equations.

3.4) Computational Effort for Boundary Flexiblility Vectors vs

Normal Modes of Vibration:

In this section, the number of operations required to
generate (&) boundary flexibility vectors versus (k) normal modes
of vibration, is estimated. In the numerical problems of chapters
four and five, the method used for obtaining the eigenvalues is
the determinant search method (see Bathe [18]) with bisection
iteration. While the method used to extract the mode shapes
(eigenvectors) is the inverse iteration method (see Bathe [18]).
The number of required operations is estimated by using some basic
criteria from reference [19]. The detailed calculations are
listed in appendix A, while in this section only the final results
are presented here.

It was found that the number of operations required to obtain

(k) eigenpairs, for a component, is as follows:

Total number of multiplications and divisions =

k y
—g— (4n3—n) + Z [ —gl (2n3+9n2-5n) + xl(2n2+4n +1) ] (3.48)
1=1

Total number of additions and subtractions =

k Yy

—sk—- (8n°-gn*mn) + § [T‘— (n°+3n%-n) + x,(20%+n- 3) ] (3.47)
1=1

where n = total number of physical D.0O.F. in component.

X, = number of inverse iterations required to obtain

eigenvector 1i.
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yl = number of iterations, 1in determinant search

method, required to obtain eigenvalue i.

While for the generation of ¢ boundary flexibility vectors per

component, the number of operations is as follows:

Total number of multiplications and divisions =

2
(T)n+(2—)n2+(L*3-3‘—'1)n (3.48)

Total number of additions and subtractions =

2 2 2
4 3 £°+ 52 -3 2 38°-15¢ +1 £+¢
( =5 ) nT+ ( — ) no+ | 5 }Jn ( 5 )

(3.49)

It can be seen from equations (3.46) through (3.49), that the

number of operations is proportional to n’. Thus in case of

components having a large number of D.O.F., the number of

operations will be governed by the n° terms in the above
equations. By using only the highest order cubic terms in the
above expressions, approximate values for the number of operations

can be obtalned as follows:
- For the generation of k eigenpairs:

Approximate number of multiplications and divisions =

(4+y) (50 (3.50)
where ; = average number of Iterations in determinant search

method.
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The approximate number of additions and subtractions is found to

be the same as in equation (3.50).
- For the generation of ¢ boundary flexibility vectors:
Approximate number of multiplications and divisions =

(—=-)n (3.51)

3

Also the approximate number of additions and subtractions is the
same as in equation (3.51).

It is worth noting that the number of generated boundary
flexibility vectors , ¢, does not appear in equation (3.51).
Hence, once the stiffness matrix is inverted to obtain the
starting vector, the subsequent vectors are generated almost
without any computational cost.

The ratio of the number of operations to extract k eigenpairs /
number of operations to generate ¢ boundary flexibility (B.F.)

vectors can be approximated by:

Approximate # of operations for extraction of k eigenpairs
Approximate # of operations for generation of ¢ B.F. vectors

(1 + ) k (3.52)

o<

The approximated ratio of equation (3.52) is dependent only on k

and ; and it can be seen that it is always greater than unity.
Hence the number of operations required to extract k eigenpairs is
always greater than the number required to generate ¢ boundary

flexibility wvectors. Furthermore, for more complex components,
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where one would require a substantial number of normal modes (k)
for a realistic characterization, the ratio given in equation
(3.52) will be relatively high.

3.5) Summary:

A new method of CMS namely, the boundary flexibility vector
method of CMS, was presented in this chapter. ’I‘he‘ displacement
modes used in the method, represent a new type of vector, named
boundary flexibility Ritz vectors. Those vectors are generated
from internal forces derived from the flexibility (or stiffness)
properties of the interface degrees of freedom of components. It
should be pointed out that the presented method avoids the
solution of a costly component eigenvalue problem, which |is
required in conventional methods of CMS, to obtain the natural
vibration modes of the components.

A comparison of the number of operations required to obtain
natural modes of vibration versus the boundary flexibility Ritz
vectors was made. The comparison indicated that a substantial
reduction of the number of required operations was obtained by
using the boundary flexibility vectors instead of natural modes in
CMS.

It should be noted that, in all of the methods of fixed or
free-interface boundary flexibility method of CMS outlined above,
for the case where there are external loads acting at internal
D.O.F. {ui} of components, those forces are used to obtain

load-dependent Ritz vectors (as in Wilson’s algorithm presented in
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chapter (2)). For this case, the formulation of the boundary

flexibility method of CMS will be presented in chapter five.



Chapter (4)

Results of Numerical Problems

in Free Vibration

4.1) Introduction:

This chapter presents three sample problems of free vibration
solved numerically by the boundary flexibility Ritz vector method
of CMS (B.F. Ritz CMS). The problems are also solved by
conventional CMS and finite-element methods. The results obtained
by the boundary flexibility method of CMS are compared to the
other methods. Also a comparison of the saving in CPU time,
obtained by using the boundary flexibility vectors instead of
eigenvectors, 1is presented in this chapter. The. first two
problems are composed of small components, having a few number of
physical D.O.F. While the third problem is substantially larger,
and demonstrates very well the saving in CPU time obtained by
using the boundary flexibility method of CMS.

4.2) Sample Problem One:

Sample problem one consists of a beam fixed at both ends and
supported at mid-span by a spring, discretized as shown in Figure
(4.1) (all units are lbs and inches). The properties of the beam
are given in the figure. Each node has two D.0.F.; vertical
displacement and flexural rotation.

The eigen-problem for this problem was solved for eleven
different values of spring stiffness k, ranging from 0.0 to

50000.0 1b/in. For each value of k, five mode shapes and natural

48
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frequencies were obtained by solving the problem by nine different
methods. The first solution for the problem was obtained from a
finite-element model of the system. The problem was then solved
using CMS by dividing the system into two identical components.
One component was the beam from node 1 to node 9 and the other
from node 9 to node 17. The constraint and attachment modes, of
component number one, used to generate the boundary flexibility
Ritz vectors are shown in Figures (4.2) and (4.3) respectively.
The various fixed-interface and free-interface CMS methods,
utilized in solving the problem, are listed in the following
sections.

4.2.1) Solution by Fixed-interface Methods of CMS:

Four methods were used to solve the problem:

Method 1- Conventional CMS, using two fixed-interface normal modes
and two constraint modes, for each component.

Method 2- Boundary flexibility CMS, using two fixed-interface
boundary flexibility Ritz vectors and two constraint
modes, for each component.

Method 3- Boundary flexibllity CMS, using three fixed-interface
boundary flexibility Ritz vectors and two constraint
modes, for each component.

Method 4- Mixed conventional and boundary flexibility CMS, using
one fixed-interface normal mode, one fixed-interface
boundary flexibility Ritz vector and two constraint

modes, for each component.
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For all methods, the values of the obtained results for
natural frequencies were compared to that obtained by the
finite-element method. The percentage of error was computed for
all the obtained frequencies, over the given range of spring
stiffness. The computed percentage errors, for all methods of
solution, for the first two natural frequencies were less than
0.06 % and these results are not listed. For the third, forth and
fifth natural frequencies, the comparative results are shown in
Figures (4.4), (4.5) and (4.6), respectively. As indicated from
the figures, by increasing the spring stiffness, the % errors are
generally increasing, except for mode shapes having a nodevat the
spring location. It can be seen from the figures, that the
results obtained by conventional CMS are better than those
obtained by boundary flexibility CMS with two boundary flexibility
Ritz vectors per component. It should be noted, however, that the
third natural frequency computed by using boundary flexibility
CMS, with two boundary flexibility Ritz vectors per component, are
quite reasonable for engineering purposes. Moreover, a
substantial saving in CPU time was attained by using two boundary
flexibility Ritz vectors rather than two normal modes, for each
component, as will be discussed in the next section. A
substantial reduction in CPU time can even be obtained when using
three boundary flexibility Ritz vectors per component, compared to
two normal modes (as will be seen in the next section). The

results obtained by the mixed conventional/ boundary flexibility
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CMS were generally in between those obtained by conventional and
boundary flexibility methods of CMS, with two boundary flexibility
vectors per component. For certain values of spring stiffness,
however, they were inferior to the boundary flexibility method
(for the third and forth natural frequencies) and superior to
conventional CMS (for the fifth natural frequency). The results
obtained by boundary flexibility CMS, with three boundary
flexibility Ritz vectors per component, were in better agreement
with the finite-element method solution than those obtained by
conventional CMS.

4.2.2) Solution by Free-Interface Methods of CMS:

Four methods were used to solve the problem:

Method 1- conventional free-interface CMS, using two
free-interface normal modes and two residual attachment
modes per component.

Method 2- Free-interface boundary flexibility CMS, using two
free-interface boundary flexibility Ritz vectors and two
residual attachment modes per component.

Method 3- Free-interface boundary flexibility CMS, using three
free-interface boundary flexibility Ritz vectors and two
residual attachment modes per component.

Method 4- Mixed conventional and boundary flexibility CMS, using
one free-interface normal mode, one free-interface
boundary flexibility Ritz vector and two residual

attachment modes per component.
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As before, the percentage errors of the first two natural
frequencies, obtained by all four methods, are very small (less
than 0.075 % ) and are not listed. The comparative results for
the third, forth and fifth natural frequencies are shown in
Figures (4.7), (4.8) , and (4.9) respectively. Comparing the
results to that obtained by fixed-interface components, it can be
seen that for conventional and mixed methods of CMS, the results
obtained by using fixed-interface components were generally better
than that obtained by using free-interface components. While for
the boundary flexibility method of CMS (whether two or three
boundary flexibility vectors are used per component), the results
were nearly the same for both fixed and free-interface components.
It can be seen from Figures (4.7), (4.8) and (4.9) that the
results obtained by conventional free-interface CMS were better
than those obtained by the boundary flexibility method, with two
boundary flexibility vectors per component. However, they were
comparable and the difference was not as large as in
fixed-interface methods. The results obtained by the mixed
conventional/ boundary flexibility model were always in between
those obtained by conventional and boundary flexibility (with two
vectors per component) methods of CMS. The results obtained by
the boundary flexibility CMS, with three boundary flexibility Ritz
vectors per component, were in the best agreement with the
finite-element method solution, and they were nearly equal. It

can be seen from Figure (4.9) that the conventional CMS, boundary
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flexibility CMS (with two vectors per component), and mixed
methods gave unreasonable values for the fifth natural frequency.

CPU time was compared for the extraction of normal modes of
vibration versus the generation of the boundary flexibility
vectors, for the free-interface solutions. For each component, it
was found that a saving of 47 % of CPU time was achieved in
generating two free-interface boundary flexibility vectors rather
than two free-interface normal modes. Moreover a saving of 31 %
of CPU time was achieved, for the case of generating three
boundary flexibility vectors versus two normal modes. It should
be noted that the most costly operation in generating the boundary
flexibility vectors is the inversion of the full stiffness matrix
[k]l, in case of free-interface components (see equation (3.20)),
or the stiffness matrix [kl} of internal D.O.F., in case of
fixed-interface components (see equation (3.10)}). This inversion
of the stiffness matrix, 1is also required in conventional
free-interface CMS (see equations (3.28) and (3.30)) for the
generation of residual attachment modes, or in conventional
fixed-interface CMS (see equation (3.5)) for the generation of
constraint modes. As this fact was not taken into consideration
in computing the saving in CPU time, the above results regarding
the saving in CPU time can be considered conservative.

4.3) Sample Problem Two:

This problem is used to illustrate the solution of free

vibration problems by free-interface boundary flexibility vector
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method of CMS, for components having rigid-body modes. The

problem is similar to problem one with the support at node one

being hinged instead of being fixed (see Figure (4.10)). Hence
component number one has one rigid-body mode, which is the

rotation of the whole component about the hinged node. For a

fixed spring stiffness, the problem is solved by four methods.

The first method of solution is by the finite-element method,

while the other three solutions are obtained by CMS. The three

methods of CMS used, are as follows:

Method 1- Conventional free-interface CMS, using one rigid-body
mode, one free-interface normal mode and two residual
inertia relief attachment modes for the first component.
Two free-interface normal modes and two residual
attachment modes were used for the second component.

Method 2- Boundary flexibility CMS, using one rigid-body mode, one
free-interface boundary flexibility Ritz vector and two
residual inertia relief attachment modes, for the first
component. Two free-interface boundary flexibility Ritz
vectors and two residual attachment modes were used for
the second component.

Method 3- Boundary flexibility CMS as in method 2 above, but the
number of free-interface boundary flexibility vectors,
in the two components, is increased by one.

Five natural frequencies were obtained for each method. The

% discrepancy of all the obtained natural frequencies, compared to
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the finite-element solution, were computed for all the three
methods (see table (4.1)). For conventional CMS (method 1), the
results were slightly better than those obtained by boundary
flexibility CMS (method 2). Both of the two methods gave
unreasonable values for the fifth natural frequency. The results
obtained for all five natural frequencies by boundary flexibility
CMS (method 3) were in the best agreement with the finite-element
method solution.

4.4) Sample Problem Three:

This sample problem is used to verify the accuracy of the
results obtained by the boundary flexibility method of CMS, in
case of components having a large number of D.0.F. The problem is
also used to compute the saving in CPU time obtained by using
boundary flexibility CMS instead of conventional methods.

The problem consists of a three dimensional three storey
frame, as shown in Figure (4.11), fixed to the ground at four
columns. The properties of the beams and columns are given in
Figure (4.11). Also given is the finite-element model for the
frame. The total number of physical D.O.F. for this frame is 648,
corresponding to 6 D.0O.F. per node. The problem was first solved
by the finite-element model obtaining the first twelve natural
frequencies. It was then solved by the boundary flexibility and
conventional methods of CMS. The structure was divided into four
components by two vertical planes; the first plane passing through

nodes 29, 30, 31, 82, 83 and 84 and the second plane passing
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through nodes 26, 27, 28, 85, 86 and 87. Component number one is
shown in Figure (4.12). Fixed-interface components were used for
the two CMS methods. For each component, 36 constraint modes were
used, corresponding to six D.O.F. per node at the interfaces. For
the boundary flexibility method of CMS, three boundary flexibility
vectors were generated, for each component. The same number of
eigenvectors were used in conventional CMS, for each component.
Hence the total number of D.O.F. for the whole frame in CMS
methods was reduced to 84, compared to 648 D.0O.F. in the
finite-element model. The results obtained for the first twelve
natural frequencies, by the boundary flexibility and conventional
methods of CMS were <compared to that obtained by the
finite-element method, and the results were presented in Table
(4.2). From Table (4.2), it is clear that the results obtained by
both methods of CMS, for the twelve natural frequencies, are in a
very good agreement to that obtained by the finite-element method.

The percentage saving in CPU time obtained by using the
boundary flexibility vectors instead of eigenvectors, was computed
for each component. Figure (4.13) shows the percentage saving in
CPU time, in the case where equal numbers of boundary flexibility
vectors and eigenvectors were generated, up to eight boundary
flexibility vectors or eigenvectors per component. Two curves are
shown in Figure (4.13). The lower curve of Figure (4.13) is the
saving computed for the case where the CPU time required to invert

the stiffness matrix in the boundary flexibility method of CMS, is
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taken into consideration. The upper curve of Figure (4.13)
represents the saving when the CPU time required to invert the
stiffness matrix is not taken into consideration. The reason for
showing the upper curve is that the stiffness matrix inversion is
also required in conventional method of CMS to generate the
constraint modes. An average percentage savings in CPU time of
75% in the lower curve and 80% in the upper curve are observed.
Figure (4.14) shows the percentage saving in CPU time obtained by
using up to five boundary flexibility wvectors versus one
eigenvector. For the case where the CPU time required to invert
the stiffness matrix in the boundary flexibility method is
included, it can be seen from Figure (4.14) that 12% saving in CPU
time can be achieved, if four boundary flexibility vectors are
generated instead of one eigenvector. While for the case where
the time required to invert the stiffness matrix is not included,
a saving of 20% in CPU time can be achieved, even if five boundary

flexibility vectors are generated instead of one elgenvector.
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Method wl wz w3 u4 'ws
1 0.05883 | 0.0z2332 0.83544 | 2.3s334 23.08381
2 4.24368 | 4.237s% 1.73601 | 2.82138 31.4783
3 0.05878 | 0.02421 0.03587 | 0.:144S 2.34257

Table (4.1) - % Error of Natural Frequencies For Sazmple

Problem Two
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Natural Method
5233223 FEM Conven. B.F. CMS
CMS

w, 24.58862 24.6043 24.6025
w, 29.6600 28.8670 29.6691
Wy 30. 20868 30.2142 30.2183
w, 30. 8600 30.8678 30.8688
Wg 32.8940 32.9237 32.9275
Wg 37.3674 37.3868 37.36886
oy 38.6329 38.6544 38.6339
wg 39.3779 39.4619 39.4755
wg 44.9766 45.0620 45. 0627
@9 52.0542 52. 1692 52.1414
@y 64. 4975 64.9022 65. 1329
@5 65.8761 66.2917 66.5366

Table (4.2) - Comparison of Natural Frequencies

for Sample Problem Three




Chapter (5)

Forced Vibration Response by The Boundary

Flexibility Vector Method of CMS

5.1) Introduction:

This chapter presents the formulation of the boundary
flexibility method of CMS, for the forced vibration problem. It
also presents a derivation indicating that the load-dependent Ritz
vectors, used by Wilson in his formulation for fixed-interface
CMS, yield a flexibility representation higher than the
corresponding finite-element model, for the internal D.O.F., where
external loads are applied to generate the vectors. It is further
shown in this chapter, how the load~dependent Ritz vectors can be
generated in a way such that the flexibility representation of
fixed-interface components 1is equal to the corresponding
finite-element model. Finally, a numerical example is solved by
several methods and for different loading conditions. The results
of the boundary flexibility method is compared to that obtained by
the other methods.

5.2) The Application of The Boundary Flexibility Method of CMS in

Forced Vibration Problems:

The boundary flexibility method of CMS, presented in chapter
three, can be applied to forced vibration problems. For
components having no external loads applied, the formula;ion will
be similar to that presented in chapter three, for fixed and

free-interface components. For components where external loads

74
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are applied, the following two cases are considered:

1) If the external load is applied at an interface D.0.F., the
formulation will be exactly the same as to what was presented in
chapter three, for fixed and free-interface components.

2) If the external load is applied at an internal D.0.F., then the
external load vector is transformed to the mixed physical and
generalized coordinate system as follows:

Consider the equation of motion for a fixed or free-interface

component :
.. A4 P
[m] {u} + [c] {u} + [k] {u} = N (5.1)
f
1
where {Pc} = subvector of interface internal forces between
components.
{fi} = subvector of external loads applied at one or

more internal D.O.F.
[m], [k], [c], {U}, {u} and {u} are as before.
The equation of motion is transformed to the mixed physical and

generalized coordinate system as follows:

c

P
(TIT (0TI + (TIT (eliTI{Q + ITIT [KIITI{u} = mr{ }

f
t

(5.2)

where [T] = transformation matrix given Dby either of
equations (3.11), (3.14) or (3.386).

It should be noted that the internal force subvector, {Pc}. will

be unaffected by any of the transformations given by equations
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(3.11), (3.14) or (3.36). While the external load subvector is
transformed from the physical coordinate system to a mixed
physical and generalized coordinate system.

For free-interface components, the method will be similar to
that outlined in chapter three, with every {uc} vector replaced
by {ua} and every {ui} vector replaced by {uw}, in all the
equations , where {ua} is the vector of D.O.F. where external or
internal loads are applied and {uw} is the complement of {ua} in
{u}. Thus the loaa—dependent vectors will be contained in the
residual attachment modes and the boundary flexibility vectors.

For fixed-interface components, the formulation has to be
modified in order to generate residual attachment modes from the
external applied loads. Assume that the external loads are
applied at a subvector (ua} of internal D.OQ.F. Then the total

displacement vector is partitioned into

(5.3)

h—
=
IS
[[]
—t—
__C-' OC
——
1]
[« ﬂ‘: nf-'-'

where {uh} subvector of internal D.O.F. where external loads
are applied.

{ uw}

complement of {ua} in {ui}.

In order to obtain good results for the set {uh} where the
external loads are applied, the columns of the flexibility matrix

corresponding to {ua}, in the CMS model, must be complete. In



77

other words, the flexibility of the D.O.F. in {uh} must be the
same In the CMS and FEM models. Similar to free-interface
components, the set of constraint modes [@c] and fixed-interface
boundary flexibility vectors [Qtl do not supply the full
flexibility for the D.O.F. 1in {uh}. Thus residual attachment
modes have to be added to obtain the desired full flexibility.
Hence, the contribution of the constraint modes [¢c] and the
fixed-interface boundary flexibility vectors [Q£] to the
flexibility matrix, must be obtained.

Let [T] be the matrix containing [¢c] and [QZJ in its columns

1] 10,
(1] = [wc] [Q,) ] .  (5.8)
lélg [Q]£
The size of [T] is (n) x (¢ + £). Where n is the total number of
physical D.O.F. in component, ¢ is the number of interface D.O.F.
and ¢ is equal to the number of the fixed-interface boundary
flexibility vectors. Similar to equation (3.27), the contribution
of [T] to the flexibility matrix is given by:

-1

(81 = (11 [ (07w m ] (5.5)

where [gk] = contribution of [T] to the flexibility matrix.

Substitute equation (5.4) in equation (5.5) and note that

- -1 T—
[ng = [kil [kig and [kxl = [kcl
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HHnH HOM
(g ] = - »
IHW_M wam Hou_
-1
-1
:”nm l:n.L:nL :nom :nn~ _..Hnm HOW »
T -1
[0,] [Q,] e, ] Uk ][~k k] Q]
(1] -k Jix)™*
ce nM .H.M Am.mv
[0,] [q,]
From equation (3.13)
. -1
(1] (0] [k ]-[k M:i- [k ] (0]
meu = n.u..H c (1] c ) -
uan :n:_" Hoh_ Ho?_" Ho% :nLHoZ
(I ] -[k Jik ]
cc o~ .H.M nm..ﬂv
[o,] [Q,]

If the fixed-interface boundary flexibility vectors were

orthogonalized and normalized with respect to the stiffness
matrix, instead of the mass matrix, then, Hom.:w_ﬁomuﬁ:k

and hence,
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Let [g] be the total flexibility matrix of the component. In
Appendix B, [g] is derived in terms of the stiffness submatrices

of the fixed-interface component. Thus,

[gctlz [gcl
(gl = (5.9)
(5] lg,]

-1
where [gc; [[kc‘]:-[kc][kl]-l[k“]:]

-1
T -1 -1
gl = - [[kcg-[kc][kil [klg] [kc}[kl}

ic

—
0Q
0
——
[}

-1
_ -1 -1 ! -1
(g, = U™+ i) e [ gt o ] o o

Hence the unrepresented flexibility matrix, or the residual

flexibility matrix [gd] is given by:

o}

]
(g1 =1[gl -lg]= °e
‘ ‘ [ 1 k] - [g,lg,

T } (5.10)
]

For fixed-interface compconents, the set {uc} is considered fixed.
Hence the residual flexibility matrix for the fixed-interface

component will be [gd]“

- -1 _ T
lg,],, = [k ] [Q,11Q,] (5.11)

which is the full flexibility matrix for the fixed component,
minus the contribution of the fixed-interface boundary flexibility

vectors to the flexibility matrix. The residual flexibility
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matrix given by equation (5.11), is used to obtain the residual
attachment modes [Wd] for the fixed component. This is achieved
by applying unit forces at the subvector {ua} of the physical
D.0.F. Hence the residual attachment modes [Wd] are the columns
of the residual flexibility matrix [gdhi, corresponding to the
D.O.F. in {ua}. It should be noted that the final displaced
shapes formed by [Qc], [Qel and [W&], will provide the full
flexibility representation for the D.O.F. 1in {ua} where the
external loads are applied. Thus the prediction of responses of
D.O.F. in {ua} by using this formulation, is expected to be better
than a formulation which does not use the residual attachment
modes. If {pl} and {pd} are the generalized coordinates
associated with [Qzl and [Wd], the sizes of {pl} and {pd} are (&)
and (a) respectively, where (2) is the number of boundary
flexibility vectors in [Qll' and (a) is the number of D.O.F. in
{ua} where the external loads are applied. The transformation of
coordinates for the fixed-interface component, for case of

external applied loads is given by:

u Y (1] (o], I[o] Y
[ = [T] pl = ce c ca pl (5.12)
u P, [ng [Q£] [W&] P,

where [T] = transformation matrix of order (n) x (c + £ + a).

The transformation matrix [T], is used to transform the property

matrices and the load subvector {fx}’ as in equation (5.2), where
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£
{r} = e (5.13)
0

where {fa} = subvector of external loads applied at internal
degrees of freedom {uh}.

5.3) A Comment on Wilson's Load-Dependent Ritz Vectors:

As mentioned in chapter two, Wilson et al. [15] applied the
load-dependent Ritz vectors to fixed-interface CMS. Only
constraint modes were used for components having no external loads
applied at internal D.O.F. For components having external loads
{fa} applied at a subset {u‘} of the internal D.O.F. {ux},
load-dependent Ritz vectors were generated from those applied
loads. This section proves that the load-dependent Ritz vectors,
the subsequent vectors generated from them and the constraint
modes, will supply flexibility properties for the D.O.F. in {ua},
greater than that of the corresponding finite-element model. Thus
higher displacement responses are obtained for the D.O.F. in {ua},
by using this model.

Consider the same notation used in the previous section.
Starting only with constraint modes [@c], as displacement shapes
for a component, we can proceed in a similar manner to that of the
previous section, to obtain the contribution of the constraint
modes to the total flexibility matrix. It was found to be equal

to (compare to equation (5.8)):
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[g ] (g ]
(g, ] = [ k ee kel ] (5.14)
[gkllc [gk]ll

-1
-1
Jee = [0t e ]

b
=3
(]
o]
(]
~——
m
[}

——
om
([
0Q

-1
- [t oo g ] gy

0Q
]

-1
-1 -1 -1
[k, ] [kig_[[kcg—[kc;[kl; [k“]:] (ke _J K, )

If [g] is the total flexibility given by equation (5.9), then the
residual flexibility matrix [gd] (or the unrepresented
flexibility), is given by
0] o]
(g1 =1[(g] -1[g] = (5.15)
d k ]
c

-1
[01 [kll

Which indicates that the constraint modes [@k] supply full
flexibility to the submatrices [geg, [gll and [gcl, and an
incomplete flexibility to the submatrix [gll. Wilson et al. [15]
used this [k&]'l matrix to generate the starting load-dependent
vector from the external applied load. Thus the starting vectors
will be the columns of the residual flexibility matrix, [gd] =
[klyd, corresponding to the D.O.F. in {uh}{ where the external
applied loads act. Any subsequent vectors are generated according

to Wilson’s algorithm given in chapter two. It should be noted
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that the starting vectors, by themselves, will supply the full
flexibility representation for the D.O.F. in {ua} and any
subsequent generated vectors will add to the flexibility of the
D.O.F. in {ua}. Thus the resulting component will have an “excess
flexibility" for the D.O.F. 1in {ua} and hence a higher response
prediction for the D.O.F. where the external loads are applied.

In order to obtain a component having a more realistic
representation of the flexibility, another approach is suggested.
This approach 1is similar to that taken in chapter three for
free-interface components, in the boundary flexibility method of
CMS. Assume, for simplicity, that the external load is applied
only at D.O.F. number j from the set of degrees of freedom in

{ul}. The static deflected shape obtained by this load is by
definition equal to {¢i}, which is the attachment mode shape for
D.O.F. number j. The {¢i} vector 1s equal to the column of the

flexibility matrix, [gd] = [kl}'l, corresponding to D.0.F. number
J. {¢i} is the starting load-dependent Ritz vector used by Wilson
et al. [15]. In this formulation the starting vector will instead

be
* - -1 J
{xl} = [kzl [ml] {¢a} (5.186)

where {x:} = starting load-dependent Ritz vector.
It can be seen that {x:} is the inertial loading of the static
response to the applied external 1load, and not the response

itself, as in Wilson’s method. This is exactly similar to that
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presented for free-interface components, in the boundary
flexibility method of CMS (see section 3.3.1.1.). The subsequent
vectors are generated from the {x:} vector by using Wilson’s
algorithm. It should be noted that orthogonalizations and
normalizations are carried out with respect to the stiffness
matrix [kl], instead of the mass matrix [mll. Thus a new simple
residual flexibility matrix is obtained (as in the previous

section):

[g,] - (x10x17

~—
U]
]

[klri - xix)”t (5.17)

new residual flexibility matrix.

where [gd‘]

[X] matrix containing the generated load-dependent
Ritz vectors in its columns.

This new residual flexibility matrix is used to generate residual
attachment modes [Wh], which will be, in this case, the columns of
the [gd\] matrix corresponding to D.O.F. number J. The final

transformation of coordinates, in its general form, is given by:

u Y (1] 1o}, o] Y
c = [T] pe = ce c ca pe (5.18)
u (81 [X] [v]

pd ic d pd

where {pe} = generalized coordinates associated with (&)

generated load-dependent vectors in [X].

{p} generalized coordinates associated with (a)

d
residual attachment modes [W;], corresponding to
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D.O.F. in {ua} where external loads are applied.

[T] = transformation matrix of order (n) x (c + £ + a).
It should be noted that by this approach, we can ensure a full
flexibllity representation for the D.O.F. in {ua}. The reason for
this is that the contribution of the generated load-dependent Ritz
vectors to the flexibility matrix, was taken into consideration in
equation (5.17). The property matrices and the external load
vector are transformed, using the [T] matrix as before.

5.4) Sample Problem:

The structure used to 1illustrate the forced vibration
response by the boundary flexibility vector method of CMS, is the
one shown in Figure (4.11), in the previous section. The external
loading function applied is a step function, shown in Figure
(5.1). The method used for integrating the equations of motions,
is the Newmark step by step integration scheme (see Bathe [18]),
with constants « and & equal to 0.25 and 0.5 respectively. This
method is chosen because it is unconditionally stable for the
given values of a and §. The time step chosen for integration is
0.02 seconds, which is less than the first period of the structure
divided by ten. Proportional damping is used (see [16] and [181)

according to the following equation:
[C] = « [M] + 8 [K] (5.19)

Where [C], [M] and [K] are damping, mass and stiffness matrices
respectively, for the whole system. a and B are constants to be

determined from two given damping ratios corresponding to two
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unequal natural frequencies (see Appendix C). Two levels of
damping are used; a low level corresponding to 51 = 0.002 and
Ea=0.15 and a higher level corresponding to 61 = 0.05 and
Es = 0.15. 61 and EB are the damping ratios for natural
frequencies one and eight respectively. For the above two levels
of damping, the corresponding proportional constants are (a1 =
-7.489 , 31 = 0.0124) and (oc2= -3.584 , Bz= 0.0098) respectively
(see Appendix C).

Three loading cases are considered, for each damping level,
They are as follows:
1) Load acting at node 31 in the global Z direction. Node 31 is
an interface D.0.F. in components one and two. This case is
solved by three methods; method one is by direct integration of
the equations of motion, method two is by conventional CMS by
using constraint modes and three fixed-interface normal modes per
component and method three is by the boundary flexibility method
of CMS by using constraint modes and three fixed-interface
boundary flexibility Ritz vectors. For all methods, Z-direction
displacement responses are obtained at nodes 13, 31 and 112 (see
Figures (5.2), (5.3) and (5.4) for case of low damping, and
Figures (5.5), (5.8) and (5.7) for case of high damping). The
results obtained are almost the same for the three methods. For
all responses, the case of high damping converges to the static
solution after few cycles, while the case of low damping keeps

oscillating about the static response, and requires a larger
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number of response cycles in order to converge to it. For the two
damping levels, the maximum and static responses, for each given
node, obtained by the three different methods are shown in Tables
(5.1) and (5.2).

2) Load acting at node 10 in the global Z-direction. This case is
also solved by the above three methods. The 2Z-direction
displacement responses are calculated at nodes 10, 84 and 112 (see
Figures (5.8), (5.9) and (5.10) for low damping case and Figures
(5.11), (5.12) and (5.13) for high damping case). Also the
results obtained are almost the same for all three methods. The
maximum and static responses obtained by each method, for both the
two damping levels, are presented in Tables (5.3} and (5.4).

3) Load acting at node 16 in the global Y-direction. This case is
solved by the above three methods and by another fourth method.
The fourth method is the boundary flexibility method of CMS, with
two boundary flexibility vectors, one residual attachment mode and
constraint modes for component one where the load is applied, and
three boundary flexibility vectors and constraint modes for each
of the other three components. The Y-direction displacement
responses are obtalned at nodes 18, 87 and 99 (see Figures (5.14),
(5.15) and (S5.16) for low damping case and Figures (5.17), (5.18)
and (5.19) for high damping case). Tables (5.5) and (5.8) show
the maximum and static responses obtained by all methods, for the
two damping levels. For nodes 87 and 99, the results obtained by

the four methods are almost the same, for the two levels of
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damping. For the response at node 16, the results are not the
same, as can be seen from Figure (5.14) and Table (5.5) for case
of low damping, and Figure (5.17) and Table (5.6) for case of high
damping. The results obtained, for the two levels of damping, by
the conventional CMS method, indicates the maximum response is
about 11% lower and the static response is about 14.5% lower than
the direct integration results. Better results are obtained by
the boundary flexibility method of CMS, in which three boundary
flexibility vectors are used for each component. The results
obtained by the boundary flexibility method of CMS, by using one
residual attachment mode for component number one, are in the best
agreement with the results obtained by the direct integration

method.
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Figure (5.18) - Response at Node 87 in The Y-Direction
for The Case of Load Acting at Node 16
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Method
Responses Direct Conven. B.F. CMS
Integration CMS
Z13 max. 0. 19363 0.19382 0.19355
Z13 static 0.107863 0. 10763 0.10791
Z31 max. 0.45855 0. 45859 0.453967
231 static 0.27631 0.27631 0.27631
Z112 max. 0.06321 0.06320 0.06320
lezstatic 0.02718 0.02718 0.02718
Table (5.1 ) - Maximum And Static Responses for

Load at Node 31 in Z-Direction
With Low Damping.
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Method
Responses Direct Conven. B.F. CMS
Integration CMS
Z13 max. 0.1848S 0.18503 0.18478
Z13 static 0.10699 0. 10698 0. 10689
231 max. 0.44217 0. 44223 0. 44231
231 static 0.27538 0.27538 0.27538
Z112 max. 0.058395 0.05894 0.05884
lezstatic 0.02670 0.02670 0.02670
Table (5.2 ) - Maximum And Static Responses for

Load at Node 31 in Z-Direction
With High Damping
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Method
Responses Direct Conven. B.F. CMS
Integration CMS
210 max. 0.08345 0.08313 0.08313
210 static 0. 05265 0.05236 0.05236
284 max. 0.08310 0.08310 0.06308
284 static 0.02722 0.02721 0.02721
2112 max. 0.02667 0.02663 0.02663
lezstatic 0.00182 0.00182 0.00192
Table (5.3 ) - Maximum And Static Responses for

Load at Node 10 in Z-Direction
With Low Damping.
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Method
Responses Direct Conven. B.F. CMS
Integration CMS
Z10 max. 0.07661 0.078625 0.07624
Z10 static 0.05278 0.05247 0. 05246
284 max. 0.05805 0. 05805 0.05905 
284 static 0.02715 0.02715 0.02715
2112 max. 0.01931 0.01928 0.01928
lezstatic 0.00184 0.00184 0.00184
Table (5.4 ) - Maximum And Static Responses for

Load at Node 10 in Z-Direction
With High Damping.
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Method
ReSponses | pirect | Conven.| B.F. CMS | B.F. CMS Witn
Integ. CMS Resid. Mode
Y16 max. 0.08908 0.07925 0.08835 0.08781
‘{16 static| 0.086522 0.05583 0.06287 0.063886
Y87 max. -0.02233 [-0.02239 |-0.02251 -0.02247
Y87 static|-0.00353 |-0.00353 |-0.00353 -0.00353
Y99 max. -0.01219 |[-0.01212 |-0.01231 -0.01229
Ygg static|-0.00193 {-0.00183 |-0.00193 -0.00183
Table (5.5 ) - Maximum And Static Responses for

Load at Node 16 in Y-Direction
With Low Damping.
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Method
ReSponses | pirect | Conven.| B.F. CMS | B.F. CMS With
Integ. CMS Resid. Mode
Y16 max. 0.08793 | 0.07812 | 0.08578 0. 08665
Yls static| 0.06555 | 0.05611 | 0.06318 0.06417
Y87 max. -0.02181 {-0.02159 [-0.02172 -0.02168
Y87 static|{-0.00351 |-0.00351 |-0.00351 -0.00351
‘{99 max. -0.01048 |-0.01043 |-0.01060 -0.01058
Ygg static|-0.00184 |-0.001%4 |-0.00194 -0.00194
Table (5.6 ) - Maximum And Static Responses For

Load at Node 16 in Y-Direction

With High

Damping.




Chapter (6)

Summary and Conclusions

A new method of component mode synthesis was presented in
this work. The new method, namely the boundary flexibility vector
of CMS, 1is based upon a set of static Ritz vectors (boundary
flexibility vectors) as generalized displacement shapes for
components. The generation of these vectors does not require the
solution of the eigenproblem associated with the component, as in
the case of conventional methods of CMS. The formulation of the
new method for the free vibration problem as well as the forced
vibration problem, was presented for both fixed and free-interface
components. A comparison of the number of operations réquired to
obtain the boundary flexibility vectors versus normal modes of
vibration, was presented. The comparison showed a substantial
reduction of the number of required operations by using the
boundary flexibility vectors, instead of eigenvectors in CMS.

Numerical examples for the free vibration problem were
presented in chapter four. The examples were solved by the
boundary flexibility method of CMS and by other different methods.
Results indicated that by using the boundary flexibility method,
more accurate results could be obtained with a substantial saving
in CPU time. The new method was applied to a substantially large
structure, in chapter four. The results obtained by the boundary
flexibility method of CMS, were 1in good agreement with

finite-element and conventional methods of CMS. The saving in CPU
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time gained by using the boundary flexibility vectors, instead of
eigenvectors, was computed for this problem. An average saving
of CPU time between 75% and 80% could be attained, for generating
the same number of vectors.

A numerical example was presented for the forced vibration
problem. The results obtained by the boundary flexibility method
of CMS, were in good agreement with the results obtained from the
direct integration of the equations of motion. In all cases
considered, the results obtained by the boundary flexibility
method of CMS were almost the same and sometimes superior to those
obtained by conventional methods of CMS.

It was proved by this work, that the boundary flexibility
method of CMS could be applied to free and forced vibration
problems. It was shown that accurate results could be obtained by
applying the method, with a substantial saving in CPU time
compared to conventional methods of CMS.

A general outline for continuation of this work may be the
following:

1- Develop a criteria to specify which of the constraint or
attachment modes, are to be chosen to generate the boundary
flexibility vectors. This criteria should give an indication of
how much a constraint or an attachment mode will contribute to the
response.

2- Investigate methods for refining the generated boundary

flexibility vectors. One idea suggested is to investigate the
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generation of the vectors from actual interface stiffness

properties between components, instead of assuming the interface

either fixed or free.



1)

2)

3)

4)

5)

6)

7)

8)

g)

10)

11)

12)

References

Hurty, W.C., "Dynamic Analysis of Structural Systems Using
Component Modes", AIAA Journal, Vol. 3, No. 4, April 19865,
pp. 678-685.

Abdallah, A.A., "Generalized Dynamic substructuring Utilizing
Mixed Finite Element and Modal Synthesis Techniques and
Development of Computer Program DYSTAN 1987", M.S. Thesis,
Department of Civil Engineering, Case Western Reserve
University, Cleveland, Ohio, January 1988.

Craig, R.R. Jr., and Bampton M.C.C., “Coupling of
Substructures for Dynamic Analysis", AId4 Journal, Vol. 86,
No. 7, July 1968, pp. 1313-1319

Craig, R.R. Jr., “Structural Dynamics”, John Wiley and Sons,
New York, 1981.

MacNeal, R.H., "A Hybrid Method of Component Mode Synthesis",
Computers & Structures, Vol. 1, 1871, pp. 581-601.

Rubin, S., 'Improved Component-Mode Representation for
Structural Dynamic Analysis", AIAA Journal, Vol. 13, No. 8,
August 1975, pp. 995-1006.

Martinez, D.R., and Gregory, D.L., "“A Comparison of Free
Component Mode Synthesis Techniques Usi ng MSC/NASTRAN", SAND
83-0025, June 1984.

Goldman, R.L., "Vibration Analysis by Dynamic Partitioning",
AIAA Journal, Vol. 7, No. 6, June 1968, pp. 1152-1154.

Hou, S.N., "Review of a Modal Synthesis Technique and a New
Approach", Shock & Vibration Bulletin, No. 40, Part 4, 1968,
pp. 25-39.

Dowell, E.H., "Free Vibrations of an Arbitrary Structure in
Terms of Component Modes", Journal of Applied Mechanics, Vol.
39, No. 3, September 1972, pp. 727-732.

Meirovitch, L., "Computational Methods in Structural
Dynamics”, Sijthoff & Noordhoff International Publishers, The
Netherlands, 1980.

Wilson, E.L., Yuan, M.-W., and Dickens, J.M., ‘“Dynamic
Analysis by Direct Superposition of Ritz Vectors", Earthquake
Engineering and Structural Dynamics , Vol. 10, No. &6,

November 1982, pp. 813-823.

118



13)

14)

15)

16)

17)

18)

189)

118

Nour-Omid, B., and Clough, R.W., “Dynamic Analysis of
Structures Using Lanczos Co-ordinates”, Earthquake
Engineering and Structural Dynamics, Vol. 12, No. 4, July
1984, pp. 565-577.

Arnold, R.R., Citerley, R.L., Chargin, M., and Galant, D.,
"Application of Ritz Vectors for Dynamic Analysis of Large
Structures", Computers & Structures, Vol. 21, No. 3, 1985,
pp. 461-467.

Wilson, E.L., and Bayo, E.P., "Use of Special Ritz Vectors in
Dynamic Substructure Analysis", ASCE Journal of Structural
Engineering, Vol. 112, No. 8, August 1986, pp. 1944-1954.

Clough, R.W., and Penzien, J., “Dynamics of Structures”,
McGraw-Hill, New York 1975.

Hintz, R.M., " Analytical Methods in Component Modal
Synthesis", AIAA Journal, Vol. 13, No. 8, August 1975, pp.
1007-1018.

Bathe, K.-J., “Finite Element Procedures in Engineering
Analysis”, Prentice-Hall, New Jersey, 1982. .

Burden, R.L., and Faires, J.D., "Numerical Analysis”, Prindle
Weber & Schmidt Publishers, Boston, 1981.



Appendix A

Comparison of The Number of Operations For Generating

The Boundary Flexibility Vectors Versus Eigenvectors

The number of operations are derived using some basic
criteria in reference [19].

A.1) Extraction of k Eigenpairs:

For the deteminant search and inverse iteration methods, see

Bathe [18]
Assume: n = total number of degrees of freedom
k = number of required eigenpairs
yl = number of iterations in determinant search method
required to obtain eigenvalue i
x1 = number of inverse iterations required to obtain
eigenvector i
[K]= stiffness matrix

[M]= mass matrix
{Y1)= eigenvector number i
g = amount of shift applied to stiffness matrix
The following steps are required to obtain each eigenpair; thus

they are repeated k times.

Ste Operat ion No. of Mult. or| No. of Add. or
P P Divisions . Subtractions
1 Apply shift
(K] = (K] - g [M] n? n?
2n3+ 3n2- Sn n3- n
Triangularize [K} 5 3
Total for step 1 2n’+ g9n- sn n’+ 3n%- n
6 3
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Ste Operat ion No. of Mult. or| No. of Add. or
P P Divisions Subtractions
Step 1 is repeated from
J=1 TR
2 | Obtain [KI.1 an®- n 8n°- an?+ n
3 6
3 | Compute {X} = [K] '{Y} n? n®- n
P j+1 ) J
2 2
Compute {Y§+1— [M] {X}j+1 n n“- n
T
7
Compute pj’1= — 2n + 1 2n - 2
A
{Y§+1 .
Compute {Y§+T — 2n n-1
T
(% ]
Total for step 3 2n®+ 4n + 1 2n%+ n - 3
Step 3 is repeated from
J=1...... X,

Then, total number of multiplications and divisions =

K y
% (an°-n) + Z [Tl (2n°+9n%-5n) + x1(2n2+4n +1) ] (A.1)
' i=1

Total number of additions and subtractions =

Yy
3

K K
—— (8n°-gn%mn) + Z [

6
1=1

(n°+3n%-n) + xi(2n2+n— 3) ] {A.2)
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A.2) Generation of ¢ Boundary Flexibility Vectors:

Assume {ql} = boundary flexibility vector number i

Ste Operat ion No. of Mult. or| No. of Add. or
P P Divisions Subtractions
3 3 2
1 | obtain (K] _4n-n 8n - %0 + n
3 6
2 2
2 | Compute {Xx} = [M] {qi} n n“-n
Compute {q'} = [K1"HX ) n? n®- n
1+1 t
Normalizing
oM = (q'f. M) (q] 21
= + -
qi+1 q1+1 n n n
{q,}, = 1 {q y n —_—
1+1 GM 1
2 2
Total for step 2 3n"+ 2n 3n"- 2n - 1
Step 2 is repeated for
i=1........ 2
3 Orthogonalizing
* T 2 2
Compute cJ= {qi} [M]{qj} n“+n n“- 1
»» »
Compute {qi}={qi}-cj{qj} n n
2 2
Total for step 3 n"+ 2n n+n-=1
Where j = 1....... i-1
Step 3 is repeated for
i=2....... 12
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(1+2+3....(&-1))

Total number of repetitions for step number 3

]
~

¢ (2-1)
2

Hence total number of multiplications and divisions =

2 2
4 3 & + 52 2 38" + 3¢ -1
(—3)n+(—2 )n+(————3 Jn (A.3)
Total number of additions and subtractions =
2 2 2
(4)n3+(£+5£ 3)n2+(3£ 15£+1) _(£+£) (A.4)

3 2 3 n 3
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Hence

ic ic

-1
-1 -1
g,] = - Uk ) 'k, ] ?L-?L?L :m& (B.10)

Similarly, by solving equations (B.5) and (B.7) simultaneocusly

ic

-1
(g ] = lg]" = - _H?L-;L?L-:w ; [k ]k )7 (B.11)

-1
_ -1 -1 _ -1 -1
g] = k]" + k] ;%ﬁ [k ]k, ]k ; [ 1k ]

ic ic

(B.12)



Appendix C S/

Proportional Damping Matrix

Proporticnal damping matrix [C], (see Bathe [18] and Clough

and Penzien [16]), 1is given by

[C] = « [M] + B [K] (C.1)
where [M] = mass matrix
[K] = stiffness matrix

« and B are constants to be determined from two given
damping ratios corresponding to two unequal frequencies of
vibrations.

Assume mode shape {¢1} has a frequency W, Pre and post multiply
both sides of equation (C.1) by (¢I} and {¢1} respectively

208 = {¢f} (a [M] +B [K]) {9}
208 =a+B w'f (C.2)

where 61 = damping ratio of mode shape i.
By substituting, in equation (C.2), any two unequal frequencies
and their corresponding assumed damping ratios, a and B can be
calculated from the resulting two simultaneous equations. The
damping ratio of any other natural frequency is obtained from:
a + B wf

E = (C.B)
2 w,
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